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Summary. A mixed-valence dimer with an applied external field aligned along the 
internuclear axis is studied using a two-site small-polaron model. Potential energy 
surfaces are calculated in the adiabatic (Born-Oppenheimer) approximation. It is 
shown that two nuclear coordinates (one totally symmetric and the other antisym- 
metric) are coupled to the electronic motion, whereas only the antisymmetric 
coordinate is coupled in the absence of an electric field. For a strongly localized 
(valence trapped) system, the displacement along the totally symmetric coordinate 
is directly proportional to the applied field strength. For delocalized (valence- 
averaged) systems, there is significant displacement along the antisymmetric 
coordinate, an effect which also vanishes in the absence of an applied field. Con- 
tributions to the linewidth are estimated. 
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1. Introduction 

Recent work by the research groups of Boxer [1, 2] and of Hush [3-5] have 
established Stark effect spectroscopy as a valuable and definitive technique for the 
characterization of mixed-valence compounds. In particular, the response of the 
molecule to the applied electric field supplies good evidence for the assignment of 
the system to the proper Robin-Day [6] class. Correct Robin-Day classification 
has sometimes been difficult, even controversial, in mixed-valence chemistry [7]. 

Furthermore, Classes II and III mixed-valence compounds contain at least one 
spatially and/or temporally delocalized electron and therefore may have large 
hyperpolarizabilities. This opens possibilities for interesting and commercially 
useful electrochromic and nonlinear optical properties. 

A number of authors [3-5, 8-10] have developed theory for the electrochromic 
properties (i.e. change in optical absorption as a function of applied field) of 
molecular electronic transitions. 
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The purpose of the present work is to look at the vibrational modes of motion 
which are coupled to the electronic motion and to calculate the potential energy 
surfaces for a mixed-valence dimer in an applied electric field. One may then 
estimate changes in the absorption maximum Vm.x and the width Avl/2 as functions 
of the applied field. 

2. The model 

The total Hamiltonian for the system is that of the free molecule plus the inter- 
action with the electric field, as 

H = Hmolceulc -I- Hf ie ld  , (1) 

The molecular term is written in the usual fashion, as a sum of a purely electronic 
term, a vibrational term and a vibronic coupling term, as 

Hmolecule = He + Hv + He-v, (2) 

lie = Ela~al + E2a;a2 + B(a?a2 + a;al),  (3) 

Hv = hi + h2, (4) 

He-v = Alqla~al + A2q2a~a2, (5) 

where 1 and 2 are the two electronic states. One purely electronic basis state is 
located on each site and each electronic state is coupled to one local vibrational 
mode with coordinate q~. The operators a + and ai are the creation and annihilation 
operators [11], respectively, for the ith electronic state, h~ represents the harmonic 
oscillator Hamiltonian for the ith vibrational mode. Ei is the energy of the ith 
electronic basis state and B is the transfer integral which arises from the coupling 
between these two states. For  present purposes, we consider the symmetric case 
E1 = Ez. At is the energy of the electron-vibrational coupling on the ith site. The 
above model for the zero-field molecule has been solved previously [12, 13] and 
has been used in the prediction of the spectroscopic properties of mixed-valence 
complexes [14-16]. 

For  present purposes, vibrational anharmonicities, frequency shifts, non- 
Condon effects, electron-electron repulsion and spin-orbit coupling are neglected 
in the molecular Hamiltonian. It is assumed that the coupling between the elec- 
tronic motion and the nuclear motion is linear in the vibrational coordinate. 

We shall designate the internuclear axis as the x axis and thus it is convenient to 
assume that the applied electric field is aligned along the x-axis. The Hamiltonian 
for the interaction with an applied electric field therefore may be written as 

Hfie l  d = - -  e E:,x, (6) 

wherex is the position operator for the electron in the molecule, e is a constant and 
Ex is the applied field. 

In the homonuclear case, it is convenient to express the nuclear coordinates in 
terms of sum and difference combinations, given by 

Q+ = 2 - 1 / 2 ( q l  + q2) ,  (7) 

q -  = 2 - 1 / 2 ( q l  - -  q2)" (8) 
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Rewriting Eq. (5) in terms of these transformed coordinates, one obtains 

Ho-v = 2-1/2 Aq-(a~ al - a~ a2) -+- 2-1/2 AQ + (9) 

for the case where A = A1 = A2. 
Noting that the local vibrational coordinates ql and q2 represent stretching 

motions of the coordination shell about each metal ion, then we may write the 
positions xl and x2 of the two metal nuclei as 

xl = -- x0i - ql, (10) 

X2 = X02 "q- q2, (11) 

where x0i represents the equilibrium distance between the ith nucleus and the 
origin. In the homonuclear case, Xo = Xol = x02. Equation (6) may now be re- 
arranged to obtain a new expression for the Hnela operator as 

Hrield = e Ex[xo(a?al - -a~a2)  + 2-1/2q- 

+ 2-1/2 Q + (a?ai - a~ a2)]. (12) 

Note that Eq. (12) is valid for the homonuclear case. It is readily apparent from 
Eqs. (9) and (12) that, within the confines of the present model, the totally 
symmetric vibrational coordinate Q ÷ is only coupled to the electronic motion in 
the presence of an applied external field. 

In the present work, results obtained in the adiabatic (Born-Oppenheimer) 
approximation (BOA) are presented. The BOA potentials enable one to see how an 
additional vibrational mode (Q ÷ ) becomes coupled to the electronic transition, and 
also how the coupling to the antisymmetric coordinate (q_) is changed as the 
external field is applied. The full vibronic coupling treatment without the BOA will 
be presented elsewhere. 

3. Parameters 

The parameters appearing in the present model Hamil~onian are B, k, A, eEx, and 
xo. All of our parameters are given in units of eV and Angstroms. We now discuss 
some specific molecules, to show how certain sets of parameters correspond to 
particular types of physical systems. 

The resonance integral B is on the order of - 0.1 eV for a typical localized 
(valence-trapped) dimer and on the order of - 1.0 eV for a typical delocalized 
(valence-averaged) dimer. Some examples are given in Table 1. For long distance 
electron transfer, where donor  and acceptor sites are separated by a few tens of 
Angstroms, the resonance integral is much smaller in magnitude. For  example, the 
electron transfer kinetics studies on the derivatized metalloprotein ruthenium 
pentaamine histidine-33-zinc-substituted cytochrome _c estimated ]B] to be 
1 x 10 -5  eV [ 2 1 ] .  

o 

Vibrational force constants k are roughly of order 10 eV/A 2 for an intramolec- 
ular mode, although a wide range of values is possible. For instance, the totally 
symmetric metal-ligand stretch mode in Ru(NH3) 2 +/a + has been calculated to be 
16 eV/A 2 [20]. k is a couple of orders of magnitude smaller for an intermolecular 
mode. 

The vibronic coupling parameter A is proportional to and on the order of k Ar, 
where dr  is the change in equilibrium bond distance for each local oscillator upon 
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Table 1. Values a for the resonance integral B and vibronic coupling parameter A in some typical 
dimer systems 

Dimer B (eV) I AI (eV/A) C o n c l u s i o n  References 

((NHa)sRuh (4,4'bipy) s + - 0.3 8.4 Loc [17] 
Wolffram's red salt - 0.6 17 Loc [18] 
Benzene dimer cation - 0.6 10 Loc; [19] 

low barrier 
((NH3)sRu)2(pyz) 5 + - 0.9 1.5 Deloc [20] 

"All values for B and A are estimated by a PKS [15,16] method, except for those for 
((NH3)sRu)2(pyz) s +. For this latter compound, B is a bridge-mediated resonance integral, and was 
calculated by an electronic structure method. A was calculated from vibrational and X-ray 
crystallographic data on the monomer 

change in oxidat ion state. Some examples of calculated and estimated values for 
A are given in Table 1. 

o 

For  the applied electric field strength, we use the value 0.2 eV/A, which 
corresponds to a very intense, but ~attainable, laser field. 

For  Xo, we use the value 2.0 A for the delocalized cases and 5.0 A for the 
localized cases, which correspond to typical values for the position of donor  and 
acceptor  a toms in a mixed-valence compound.  

4. Results 

Using the BOA, two two-dimensional  potential energy surfaces U+(Q+, q_) and 
U_ (Q +, q_ ) are obtained as 

U_(Q+,q_) = kqZ--/2 + kO2+/2 + 2-1/2AQ+ + 2-1/ZeExq_ 

- [B  2 + 1/2(Aq_ + 21/2eExxo + eExQ+)Z] l/z, (13) 

U+(Q+,q_) = kq2 /2 + kQZ+/2 + 2-~/2AQ+ + 2-1/2eEl, q_ 

-q- [-B 2 -q- 1/2(Aq_ + 21/2eE~,xo + eExQ+)2] 1/2, (14) 

for the homonuc lea r  case. Each of the two sites are assumed to be coupled to 
harmonic  vibrations. These two local vibrational modes are assumed to have equal 
force constant  k; note that  k is contained in Eq. (4). 

The lower potential  surface, represented by Eq. (13), may have either single- 
min imum or double -min imum form, depending upon the relative sizes of the 
parameters.  Figure 1 depicts contours  of equal potential for the lower (ground 
state) surface along the two nt~clear coordinates Q+ and q_ fpr the case wh%e 
B = - 1.0eV, A = - 9.0 eV/A, k = 3.5 eV/A z, eE,, = 0.2 V/A and x0 = 5.0 A. 
This corresponds  to a localized (valence-trapped) ground state where the two local 
states, which are degenerate in the absence of an applied field, have become 
nondegenerate.  In  the lower of the two wells, the innermost contour  is at - 13.1 eV 
and the next- innermost  is at - 13.0 eV. For  the localized case in zero field, there is 
a max imum along q_ located at q_ = 0. However  in the presence of an external 
field, this max imum corresponds to a saddle point  and is shifted away from q_ = 0, 
as shown in Fig. 1. Fo r  the case shown in Fig. 1, the saddle point  is located 
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Fig. 1. Contours of equal potential in the ground state in the presence of an applied electric field along 
the two coupled coordinates Q.+ and q_ for the case B = - 1.0 eV, A = - 9.0 eV/A, k = 3.5 eV/A z, 
eEx = 0.2 eV/A and Xo = 5.0 A. This corresponds to a mixed-valence dimer with a localized (val- 
ence-trapped) ground state. In the lower of the two wells, the innermost contour is at - 13.1 eV and the 
next-innermost is at - 13.0 eV 

at (Q+, q _ ) =  (2.016, 0.199), while the two minima are located at ( Q ÷ , q _ ) =  
(2.061, - 2 . 0 5 7 )  and (1.980, 1.974). The min imum for the corresponding upper 
surface is at (2.016, 0.167). 

In  the absence of  an applied field, there is no interaction between the electronic 
mot ion  and the totally symmetric  vibration Q+. However  in the present system, 
there is a finite displacement of  the minima between the upper and lower surfaces 
along Q÷.  In  the limit 2klBI/A 2 ~ 1, the displacement of the minima along Q+ is 
directly p ropor t iona l  to the applied field, as 

lim AQ+ = 21/2 eEx/k. (15) 
2klBI/h2~O 

Figure 2 depicts a slice of  the upper and lower potential surfaces along Q_,  with the 
coordinate  q_ fixed at one of  it.s min imum v~lues of 1.974 A foor the case where 
B = - 1.0 eV, A = - 10.0 eV/A, k = 3.5 eV/A 2, eEx = 0.2 V/A and Xo = 5.0 A. 
No te  that  these parameters  correspond to a localized, double-well g round  state, 
similar to the case shown in Fig. 1. The minima for the two surfaces in Fig. 2 are 
marked with solid dots. These two minima are displaced by 0.08 A along Q+. 

As the ratio 2klBI/A 2 becomes large, the displacement along Q+ between the 
upper  and lower surfaces becomes dependent upon the square of the applied field. 
For  2kIBI/A 2 large and along the q_ = 0 plane, AQ+ is given approximately by 

A Q + _~ (eE,,) 2 [A/k - 2Xo]/21/2 kB. (16) 

Figure 3 shows slicesoOf the upper and lower surfaces along Q+, with q_ fixed 
at a value of  - 0.35 A which corresponds to the ground state minimum, for the 
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Fig. 2. Cross sections of the potentia! energy surfaces along the Q+ coordinate with the q~ coordinate held 
fixed at its minjmum value of 1..974 A for the case where B = - 1.0 eV, A = - 10.0 eV/A, k = 3.5 eV/A 2, 
eEx = 0.2 eV/A and x0 = 5.0 A. These parameters correspond to a localized, double-well ground state 

Fig. 3. Cross sections of the potentjal energy surfaces along the Q+ coordinate with ~he q_ coordin~tte 
held fixed at  a value o f - 0 . 4 A  for the case B = -  0.SeV, A = -  2.0eV/A, k = 3.5eV/A 2, 
eEx = 0.2 eV/A and Xo = 2.0 A. These parameters correspond to a delocalized, valence-averaged, 
single-minimum ground state 

Fig. 4. Cross sections of the potential energy surfaces along the q_ coordinate with the Q+ coordinate 
held fixed ato the value of .0 .44A for the case B = - 0 . 8  eV, A = -2 .0eV/A,  k = 3.5eV/A 2, 
eE~ = 0.2 eV/A and Xo = 2.0 A. These parameters correspond to a delocalized ground state 

Fig. 5. The grpund potentiaol energy surfac%s for along q_ for the case where B = --0.1 eV, 
A = -- 5.0 eV/A, k = 3.0 eV/A 2 and Xo = 5.0 A for the zero-field (solid line) and the finite field of 

eE~ = 0.2 eV/,~ (dashed line) cases 
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case B = - 0.8 eV, A = - 2.0 eV/A, k = 3.5 eV/A 2, eEl, = 0.2 V and Xo = 2.0 A. 
These parameters correspond to a delocalized, valence-averaged, single-minimum 
ground state. Again [he two minimum points, which in this case are displaced from 
each other by 0.05 A along Q+, are marked with solid dots. As [BI approaches 
infinity, the displacement along Q + approaches zero. In the absence of an applied 
electric field, all displacements along Q + are zero. 

In the case where the ground state is delocalized (valence-averaged), both 
surfaces possess a minimum at q_ = 0 when the external field is off. However, the 
application of the external field introduces a substantial shift of minimum between 
the ground and excited surfaces along the antisymmetric coordinate q_, even in the 
delocalized case. Slices of the upper and lower potential surfaces along the q_ 
coordinate for such a case areo shown in F!g. 4. Parameters° used in Fig. 4 are: 
B = - 0.8 eV, A = - 2.0 eV/A, k = 3.5 eV/A 2, eEx = 0.2 V/A, Xo = 2.0 A and Q+ 
is fixed at the value of 0.435 A. As is apparent from the single-minimum lower 
surface, these parameters correspond to a delocalized ground state. In shard9 
contrast to the zero-field case, there is substantial displacement, in this case 0.5 A, 
between the minima of the two surfaces along the antisymmetric q_ coordinate. 
Thus, the delocalized dimer should exhibit significant broadening and blue-shifting 
of the "intervalence" band upon application of the electric field. 

For the preceding delocalized case, the contribution to the linewidth from the 
field-induced coupling to q_ may be written approximately as 

Av = c-1 [ (k/m)l/2 k/rth ] 1/2 [ Aq_ I (17) 

Here m is the reduced mass, c is the speed of light and h is Planck's constant. 
Equation (17) makes use of an approximate method in which the upper and lower 
surfaces are treated as displaced, equal-frequency, harmonic oscillators along the 
coordinate of interest [20-22]. For the parameters used in Figs. ~ and 4 and using 

2 7  2 2 ,.~ a v a l u e o f 0 . 5 A f o r l A q _ l a n d a t y p i c a l v a l u e o f l × 1 0 -  eVs /A ( = 1 0 a m u ) f o r  
m [-20, 22, 23], the contribution to the linewidth from q_ alone is about 2000 cm- 1. 
This contribution is expected to be considerably larger for systems with a larger 
force constant. 

It is also of interest to look at the shifts in absorption maximum for the 
intervalence band~ Symmetric, localized compounds become asymmetric in 
the presence of an external field, with one ground-state minimum shifting up 
in energy and the other shifting down. For typical values of the parameters for 
such a system, these shifts in energy can be substantial, as shown in Fig. 5. Figure 
5 plots the ground-state poter~tial energy suorfaces along q_ for the case where 
B = - 0.1 eV, A = - 5.0 eV/A, k = 3.0 eV/A, 2 and x0 = 5.0 A for the zero-field 
(solid line) and the finite field of eEx = 0.2 V/A (dashed line) cases. With the field 
switched on, the lower of the two ground-state minima is significantly stabilized 
relative to the excited state, and a large blue shift is expected in the Intervalence 
band. 

5. Discussion 

From the present work, one can calculate values for the spectral shifts (electro- 
chromic effect) upon application of an electric field, and also estimate changes in 
the linewidths. 

For both localized and delocalized mixed-valence dimers, substantial changes 
in the spectrum are predicted when the system is placed in an applied electric field. 
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Localized systems should exhibit a large blue shift when the field is switched on. 
Some small additional broadening is expected, caused by induction of coupling of 
the electronic motion to the totally symmetric coordinate. Delocalized systems are 
expected to show considerable broadening upon application of an external field, 
due to induced shifts of minima along the antisymmetric coordinate. 

In an earlier study of the CO molecule, Hush and Williams [24] obtained 
expressions for the ground-state equilibrium bond distance as a function of applied 
electric field. For the field not too large and for parameters corresponding to 
a localized case, their expression for the equilibrium bond distance in this limit is 
proportional to the applied field to the first power. For parameters corresponding 
to the delocalized case and for the field not too large, the equilibrium bond distance 
is proportional to the square of the applied field. The present results for the 
displacement associated with the intervalence transition show the same general 
type of field dependence in the two limiting cases. 

Application of an electric field is one, but not the only [20, 22, 25-29], mech- 
anism by which additional totally symmetric modes become coupled to the 
electronic motion in a donor-acceptor couple. 

The adiabatic approximation used here is very good for the delocalized sys- 
tems. It is less accurate for the localized systems, but still gives a reasonable picture 
of their behaviour. A full nonadiabatic treatment is currently in progress. 
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